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The question of the origins of nonexponential relaxation is addressed in terms 
of the probabilistic approach to relaxation. The interconnection between two 
differently rooted probabilistic models, i.e., between the parallel channel and 
the correlated cluster models, is presented. We show that clearly different 
probabilistic origins yield in both approaches a well-defined class of universally 
valid two-power-law responses with the stretched-exponential and exponential 
decay laws as special cases. The equivalence of both models indicates that varia- 
tions in the local environment of the relaxing configurational units (parallel 
channel relaxation) can provide a basis for self-similar relaxation dynamics 
without the need for hierarchically constrained dynamics correlated clusters 
relaxation). 

KEY WORDS: Universal relaxation law; general relaxation equation; L6vy- 
stable distribution; Mittag-Leffler distribution; Burr distribution. 

1. I N T R O D U C T I O N  

Empirical evidence has accumulated over the years showing that the time- 
dependent change of macroscopic properties of physical systems evolving 
to equilibrium exhibits a great degree of universality. I1) The empirical data, 
including data from mechanical, dielectric and magnetic relaxation, NMR, 
dynamic light and quasielastic neutron scattering, as well as from reaction 
kinetics tl-6) show that there seems to be a universal decay (relaxation) 
function q~(t) that relaxations of nonequilibrium states obey. On the basis 
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of linear dielectric response measurements, which have the important 
facility of allowing one to follow the regression of spontaneous structural 
fluctuations over several decades of time, the existence of the two-power- 
law response 

d~( t )  ~(At)  " for At4~ l  
--~ ~ - ( ( a t )  m l for At>> l (1) 

in relaxation dynamics has been established unambiguouslyJ l~ The 
parameters 0 < n, m ~< 1 and A > 0 are the characteristic material constants. 
In some cases, however, the regression to equilibrium appears to be better 
described by the stretched-exponential decay law tT) 

tb(t) = exp[ - (At ) '  - " ]  (2) 

which is in accordance with ( 1 ) at short times only. Although, the stretched- 
exponential decay law is not universally valid t''8~ it appears frequently 
enough to call attention for the origins of its ubiquity and its relationship 
with the more general form (1) of the relaxation response. 

The wide occurence of the two-power-law relaxation response, inde- 
pendently of the particular material property under consideration, attracts 
much theoretical attention for the underlying reasons of this phenomenon. 
It is well known that any relaxation process results from an appropriate 
transitional configuration into the system, imposed by nonequilibrium 
constraints at the time t = 0, and is conditioned by specific interactions of 
different parts of the systemJ L 9 l I) Both, the initial nonequilibrium state of 
a complex system and the internal interaction have, in general, random 
characteristics. Hence, the question of the origins of the universal relaxa- 
tion law has to be addressed in terms of probabilistic models which can 
provide a clue to a better understanding of the physical mechanism of the 
relaxation. Such models, even with their inability to assign precise physical 
meaning to some variates give strict constrains on the mathematical form 
of the relaxation function t~') and the practical value of rigorous results in 
clarifying the nature of relaxation cannot be denied. 

A common practice, following the historically oldest probabilistic 
attempt to relaxation, t~2) has been to assign the nonexponentiality of 
relaxation to the distribution F(b)  of random effective relaxation (trans- 
ition) rate /~ by assuming ~ a. ,2 20) that the relaxation function ~(t) is a 
weighted average of exponential decay with respect to the relaxation rate 
distribution 

S ~b(t) = e bt dF(b) (3) 



Parallel Channel and Correlated Cluster Relaxation 1243 

In the specific case of the stretched-exponential law (12) the connection with 
L6vy-stable relaxation rate distribution has been known for over a 
decadett5 17) but without direct relation to the underlying stochastic 
mechanism. This deficiency has been removed by a more general probabilistic 
approach~21, 22) to the correlated clusters relaxation mechanism/TM A micro- 
scopic stochastic scheme that uniquely leads to the macroscopic two-power- 
law response (1) has been proposed. In this probabilistic approach to the 
correlated clusters relaxation mechanism the hierarchical scheme of relaxa- 
tion, by neglecting the inter-cluster correlations, is equivalent to the parallel 
channel relaxation ~15 20) and the special case of the stretched-exponential law 
(2) results straightforwardly. This is due to the fact that in a noncorrelated 
clusters system the individually relaxing configurational units are charac- 
terized by independent and identically distributed (iid) random rates fli only. 
The same result is obtained within the framework of the parallel channel 
model where relaxation is due to events occurring through a collection of 
independent channels. Since transformation of complex physical systems can 
be realized in several independent ways, the transition probability per unit 
time/~ for the system as a whole is equal to a normalized sum of probabilities 
per unit time fli over all the possible routes for its realization. 191 This fact 
appears to be a clue to a better understanding of the stochastic origins of 
the "universal" relaxation laws3 21' 22) Namely, if the non-negative rates fli 
a r e  assumed to be iid random variables, as it is the case of parallel channel 
relaxation models, tl 6.~5 20) the distribution F(b)  of the macroscopic 
(effective) rate/~ 

 =lim 
N ~ o o  i = 1  

where A U is a sequence of suitable normalizing constants, takes the only 
possible form of the one-sided L6vy-stable distribution S~(b), 0 <o~<<. 1 
(degenerate for ~ =  1, i.e. d S ~ ( b ) / d b ~ ( 1 )  as ~--+ 1, see Fig. 1). Its 
Laplace-Stieltjes transform (3) is of the stretched exponential form (2) with 
~ =  1 - n  (for a rigorous proof see ref. 22). The necessary and sufficient 
condition for the limit (4) to exist is that the distribution of the individual 
rates fl~ belongs to the domain of attraction of the L6vy-stable law, le4' 25) i.e., 

Pr(fl//> xb ) ~- x -= Pr(fl//> b) 

for each x > 0, 0 < e ~< 1 and large b. In other words fli have to be random 
variables with a common "broad" inverse power law distribution/2~ If fig 
is the L6vy-stable variable itself, then the more restrictive stability condition 

P__c, (5) 
i=IAN 
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Fig. 1. One-sided L6vy-stable probability densities. 

is fulfilled. Let us stress that condition (5) yields the equivalence of two 
different interpretations of the relaxation function, re6' 27) i.e., either as a 
function arising from an average over a lot of possible constant transition 
rates or as a function associated with a single age-dependent rate. 

It is evident, that assumption (4) makes the parallel channel relaxation 
model useless in the general case when the universally valid class of two- 
power-law responses (1) is expected. Thus, it is natural to ask: under what 
conditions does the parallel channel model lead, if at all, to the two-power- 
law response? 

The motivation of this paper is to show that two differently rooted 
probabilistic approaches to relaxation, namely the model of individually 
relaxing configurational units (parallel channel relaxation) and the 
correlated clusters model (hierarchical or serial relaxation) are equivalent. 
Both models, from clearly different mathematical reasons which have to be 
clarified on physical grounds, provide a well-defined class of two-power- 
law responses (1) with the stretched-exponential law (2) as a special case. 
Here we derive the explicit form of the effective relaxation rate distribution 
F(b), which appears to be a generalization of the Mittag-Leffler distribu- 
tion,~28.29~ under which the equivalence holds. The probabilistic origins of 
the Mittag-Leffler distribution indicate that, in order to derive the two- 
power-law response (1) in the framework of parallel channel models, the 
effective relaxation rate cannot be a result of the simple "deterministic" 
summation (4) of iid microscopic relaxation rates fli. For this the random 
scheme of summation of iid random variables is required. Such a situation 
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can be motivated by variations in the local environment of the relaxing 
configurational units in inhomogeneous systems. 

The paper is organized as follows: in Section 2.1 we recall the basic 
idea of the probabilistic correlated clusters relaxation model, ~2L' 22, 26, 30 32) 
in Section 2.2 we analyze tail properties of the approximate solution of the 
relaxation equation derived in the framework of the correlated clusters 
mechanism and show its close relationship to the Burr distribution. (33) In 
Section 3 using the results of 2.1 we rigorously derive the explicit form of 
the effective relaxation rate distribution F(b) which in the framework of the 
parallel channel model yields all empirically found relaxation responses. 
The probabilistic origins of the two-power-law and the stretched-exponen- 
tial response in both approaches are, for convenience, presented in Table I 
of Section 4. 

2. C O R R E L A T E D  C L U S T E R S  M O D E L  

2.1. R igorous  So lu t ion  

Considering relaxation phenomena we deal with complex systems 
consisting of a large number N of subsystems (clusters) capable of changing 
their initial nonequilibrium states. The evolution of a system toward equi- 
librium is represented by the relaxation function which has to determine 
the probability Pr(0~> t) that a transition of the system as a whole from its 
initial nonequilibrium state does not happen prior to a time instant t (t7 
denotes the life-time of the initial state)J 9, ~1) Explicitly, this probability is 
given by the first passage relaxation function q~(t) defined as follows 

q~(t) = lim Pr[ ANmin(O1u ..... ONN ) ~ t]  
N ~  o~ 

(6) 

where A N is a sequence of suitable normalizing constants and OiN , 
1 ~< i~< N, is the life-time of the ith subsystem in its initial state imposed 
by nonequilibrium constraints at t = 0. ~21' 22, 26) The non-negative variables 
Oix, . . .  , ONN are assumed to form a sequence of iid random variables for 
each N. Since every physical transformation process is conditioned by the 
interactions of different parts of the system (the causality principle ~9' 14, 23~), 
the probability of preservation the initial state until a time instant t for 
each subsystem must necessarily be conditioned by appropriate variates 
reflecting the influence of the random intra- and inter-cluster dynamics. 
Thus, in order to model the physical reality in complex condensed matter 
systems, it is natural to assume for the initial nonequilibrium state of each 
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subsystem the following Conditionally Exponential Decay (CED) property 

I 
1 for t=O 

Pr(Oiu>~tlfl i=b,~li=S)= exp( -b t )  for t < s  

(exp( -bs )  for t>>.s 

(7) 

instead of a strictly exponential decay reflecting the intra-cluster dynamics 
only (for more details see t2L 22, 34)). The random transition rate fig reflects 
the correlated intra-cluster dynamics. The variate 7/; = aN l max(r/t ..... r/i 1, 
r/i+ ~,..., r/N), where aN is a sequence of suitable normalizing constants and 
r/j denotes the time needed for the structural transformation of the j t h  sub- 
system evolving to equilibrium, is the stopping time reflecting the influence 
of the inter-cluster random correlations. The CED property determines the 
minimal probability exp( -bs )  = const~ [0, 1) of preservation of the initial 
state for an individual ith subsystem until an infinitely long time. Because 
of the internal interactions, it is a physically acceptable assumptionJ TM 14. 16) 
It simply reflects, in terms of the probabilistic language, the energetically 
unstable "hilltop" position ~~ of an evolving to equilibrium subsystem. The 
non-negative variables ill, f12 .... and r/l, r/2 .... are assumed to form inde- 
pendent sequences of iid random variables. Let us note that the physical 
causality principle, indicated by the stochastic dependence of each O;N on 
fli and (r/l ,--., r/i- ~, r/;+ ~ ..... r/N), yields an improper distribution function for 
each OiN, i.e., a distribution function F such that F( + oo) = const < 1. 

Under the CED condition (7), the first passage relaxation function (6), 
if assumed q~(~) = 0, fulfils the following General Relaxation Equation 

exp( 1)1 dt k(~4t) ~ ~(t)  (8) 

where 0 < 0c ~< 1, A > 0 and k > 0 (the detailed derivation of (8) is given in 
ref. 22). The solution of (8) can be expressed in the integral form only 

1 fk(mr } 
qs(t)=exp - k J o  [ 1 - e x p ( - x - l ) ] d x  (9) 

and yields ~22" 30.31) the demanded power law properties (1) of the response 
function f ( x ) =  - d ~ ( t ) / d t  for n = 1 - ~ ,  m=o~/k and k~>~, 

[eA(At)~- i  for At ~ 1 
f ( t )=[o~Ak-l-1/~e-( l-Y~J/~(At)-~/k-1 for At>> l (10) 

where 7E ~ 0.577216 is the Euler constant. 
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Let us emphasize the special role of the parameter k in (8). It appears 
as a parameter in the sequence of normalizing constants in the max-stable 
lawt22. 36) of type II. In order to incorporate the inter-cluster influence in 
the probabilistic representation (7), yielding in a natural way the special 
noncorrelated cluster case, the sequence of normalizing constants aN in the 
expression 

q i = a N  l max(r/1 ..... t/i_l, T/i+I ..... qN) 

has to be of the following form 

{ 1t a~v=aNI/~inf t: F,(t)>~ l - N _  1 

where F,  is the common distribution function of the sequence of random 
variables {q,.} and a~= kAL Observe that k ~ 0 yields the solution of the 
stretched-exponential form (2). This corresponds to the case when inter- 
cluster influences, expressed by random variables 0i are neglected. In this 
case exp(-bs)  ~ 0 and the probability of preservation of the initial state in 
the subsystem, i.e. expression (7) takes strictly exponential form condi- 
tioned only by the value b of the random variable fig. As a consequence 
the first passage relaxation function (6) simply equalsIZl'221: ~ ( t ) =  
~ e-b' dS~(b). Parameter k > 0 indicates the slowing down influence of the 
inter-cluster correlations. Figure 2 represents the special cases of relaxation 
responses based on the solution (9) in terms of the values of the parameters 
k and 0c. 

For practical purposes the solution (9) can be rewritten in the 
following form 

1 , (0 )t 

where F(a, z) is the incomplete gamma function (see ref. 35, Eq. (6.5.3), 
p. 260) defined as 

F(a, z) = X a 1 e -x dx 

2.2. A p p r o x i m a t e  S o l u t i o n  

The relaxation function ~(t) defined as the survival probability 
Pr(0 ~> t) yields the existence of the probability distribution F(t) = 1 - 4(t)  
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Fig. 2. A schematic representation of the special cases of the relaxation response based on 
Eq. (9) in terms of the values of the parameter k and of the exponent ~ =  1 - n .  The values 
of the exponent m =c~/k are indicated. The abbreviations have the following meanings: 
SE stretched exponential; D--Debye (exponential); BD--broadened Debye; CC Cole- 
Cole; CD--Cole-Davidson; FL flat loss. 

of the random variable 0 representing the life-time of the system as a whole 
in its initial nonequilibrium state. Unfortunately, the form (9) of the first 
passage relaxation function (6), derived under the CED condition, cannot 
be identified with any commonly known probability distribution. This is in 
contrast to the properties of the extreme value distributions which deal 
with sequences of iid random variables with a proper distribution function 
and the limiting distributions are of the well-known fo rms .  136) In the 
presented approach it will be the case of noncorrelated cluster systems, i.e., 
when instead of (7) we have the strictly exponential decay Pr(Oi, u>/ 
t[fli=b)=exp(-bt). In order to find a commonly known distribution, 
closest to the form (9), let us derive the approximate solution of (9). 
Taking into account two terms in the series expansion of the exponential 
term exp(x -1) in the integrand of (9) we get the approximate form ~a(t) 
of the relaxation function equal to 

1 
�9 ,,(t)-[l+k(At)~]l/k, 0 < ~ 1 ,  k~>~ (11) 

This simple analytical form of the relaxation function exhibits the following 
properties: 
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(i) The time derivative of qi( t )  has the two-power-law property which 
differs from (10) only in the long time term by the factor exp[ - ( 1  -ye ) /k ] ,  
namely 

f ( t )  f l  for A t ~  1 
f , ( t )  -~ ~ e x p [ - ( 1 - ) , e ) / k ]  for At>>l 

(12) 

Figure 3 gives the plot of the long time quotient in (12). Figure 4 presents, 
for given 0c and k, the response function obtained from the rigorous (9) and 
approximate ( 11 ) forms of the relaxation function. 

(ii) As k ~ 0, ~,( t)  takes the expected stretched exponential form 

1 k ~ 0  

�9 , ( t ) -  [1 +k(At)~] ~/~ , exp[ - ( A t )  ~] 

(iii) The approximate form (11 ) can be identified with a special case 
of the Burr distribution ~33) which we denote by Bb.c(x)= 1 -  (1 + xb) -c, 
x >  0, 

q~,( t) = 1 - B~. 1/k(kl/~At) 

Note, that the particular form of the Burr distribution B~, l/~(kl/~At), as 
k ~  0, tends to the Weibull distribution W~(t) = 1-exp[-(At)~], 0 < ~ <  1. 
At this point, we also have to stress the main differences in properties of 

/ 

i i i f 

0 2 4 6 8 10 
k 

0.8 

0.6 

'~ 0.4 

0.2 

Fig. 3. The plot of long time quotient exp[ -(1 -~e)/k] in Eq. (12). 
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both distributions. Namely, random variate 0 distributed with the Weibull 
distribution has finite expected value < 0)  < oo for all 0c, while for the Burr 
distribution only if o~/k > 1. The empirical data (1) indicating the range 
(0, 1 ] for the power laws exponents n and m, "choose" the heavy tailed 
Burr life-time distribution with o~/k ~< 1 for which (O)  = oo. 

3. PARALLEL CHANNEL RELAXATION 

3.1. Power Laws Response 

The question of the origins of nonexponential relaxation addressed in 
terms of the parallel channel models (l 6. 13 20) is based on the distribution 
of random relaxation (transition) rates fli. Each rate corresponds to one 
channel of relaxation and channels are assumed to operate in a parallel 
way, i.e., individual relaxation rates are independent. If the macroscopic 
(effective) relaxation rate fl is obtained as a normalized sum, Eq. (4), of 
individual relaxation rates fli the stretched-exponential form (2) of the 
Laplace-Stieltjes transform (3) of the effective rate distribution F(b) is the 
only nondegenerate form available) 2]' 22. 24 26) 

In order to obtain the more general class (1) of relaxation responses 
in the framework of the parallel channel model, instead of the "deter- 
ministic" (4), the so-called random summation of iid individual rates fli 
should be considered. 

Let us first recall that the Burr distribution can be obtained as a 
smooth mixture of the Weibull distribution compounded with respect to 
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a random scale parameter distributed with the gamma distribution, t33) 
Using this fact, we can rewrite (11) in the following form 

~b,(t) = exp( -2~t  ~) dF~/k,k(2~/A~'), (13) 

where 

Fl/k,k --~ =F(1 / k )  ~o e -x/k d (14) 

is the generalized gamma distribution and 2 is the randomized scale 
parameter in the Weibull distribution. The stretched-exponential term in 
the integrand of (13), by relation (3), equals 

exp( -2~t  ~) = e -bt dS~(b/A) (15) 

where S~(b/2) is the one-sided L6vy-stable distribution of the effective rate 
1~ resulting from the summation (4) of iidfli. Substituting (15) into (13), 
integrating by parts and using the properties of a one-sided distribution 
function (F(0) =0, F(oo) = 1), we get 

~ba(t) = e-b'S~(b/2) dF,/k,k(2~/a ~) = e -b' dF~. ,/~ (16) 

where 

Foq l / k  = S~(b/2) dF1/k, k(A~'/A ~) (17) 

0<a~< 1, k>~a, is the distribution of the effective relaxation rate /~ 
obtained by randomizing the scale parameter 2 in S~,(b/2) with the 
generalized gamma distribution (14). The one-sided probability distribu- 
tion with the Laplace-Stieltjes transform of the form ( 11 ) has the following 
series representation 

b ) ~ (-1)"r(1/k+n) ( b 
, ~ = ~  

which is the generalized form of the Mittag-Leffler distribution introduced 
in ref. 28. Figure 5 shows the properties of the Mittag-Leffler probability 
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Fig, 5, Mittag-Leffier probability densities dF=,~/k(b/[k)/~A])/db for c~=0.6. Mittag-Leffler 
densities are monotone with an infinite peak for k > ~  and tend to unimodal L6vy-stable 
densities as k -~ 0 for arbitrary 0 < ~ < 1. 

densities for k ~> ~. Equation (17) yields the L6vy-stable density as k tends 
to 0 for arbitrary 0 < ~ < 1. In this case the gamma distribution takes the 
degenerate form. 

3.2. Random Sums of Individual Relaxation Rates 

It follows from Eq. (16) that in order to obtain the two-power-law 
response (1) in the framework of the parallel channel relaxation, the dis- 
tribution F(b) of the effective relaxation rate/~* has to be of the form given 
by Eq. (17). This is equivalent to the statement that the effective relaxation 
rate fl* is a v-stable random variable given by the following expression 

/~* = (G~/k,k)I/~,6 (18) 

where G~/k,k is a gamma random variable and /~ is a L6vy-stable (or 
a-stable) effective relaxation rate. (The representation of the distribution of 
v-stable random variables via L6vy-stable laws, as well as its tail properties 
has been studied recently ~37' 38)). In general, a v-stable effective relaxation 
rate/~* is obtained as a limit of normalized sums of a random number v, 
of iid individual relaxation rates fli 

v n 

f l*= lim 1 E fl~ (19) 
n ~ o ~  a n i ~ l  
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where a .  is a sequence of suitable normalizing constants and v. is a 
random variable independent of fli. Observe that if v. in (19) takes a 
constant value n then/~* =/~ is the L6vy-stable variable defined in (4). This 
corresponds to the degenerate gamma distribution of the random variable 
(G~/~,k) t/~ in (18), reached as k ~  0. In the particular case of the v-stable 
fl*, given by Eq. (18), v. has to be of the form 

v. = V~/., l/k, k > 0 (20) 

where Vl/n, l/k is a negative binomial random variable, 

Pr( V1/.. 1/k = r) = F(1/k) r! 1 - !  r, r = 0 ,  1,2 .... 

such that 

V l / n ,  l / k  + G l / k ,  1, 

l't 
as n ~  oo 

Since the distribution of the individual rates fli belongs to the domain of 
attraction of the L6vy-stable law for a., = (kn) l/~ 

i=1 
as n ~  oo 

we have, for v. = Vl/., ~/k, that 

v n 

n = ,  

Thus, if relaxation is due to events occurring through a collection of a 
random number v. of independent channels, being a negative binomial 
variate (20), the parallel channel relaxation mechanism leads to the 
"universal" response (1). Taking into account all possible ("deterministic" 
number) channels of relaxation in the system, only the stretched-exponen- 
tial response (2) is available. 

4. CONCLUSIONS 

We have discussed the equivalence of two differently rooted 
probabilistic approaches to relaxation, namely of the parallel channel and 
the correlated clusters models. For the first time we have shown that the 

822/88/5-6-17 
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parallel channel model in a natural way can lead to the "universal" two- 
power-law response (1). This result indicates that the short- and long-time 
self-similar relaxation dynamics may originate not only from the sequen- 
tially constrained dynamics of the correlated clusters but also may be 
attributed to variations in the local environment of the independently 
relaxing configurational units. (Such a conclusion is in accordance with 
recent analysis of random transition rate mechanism for the stretched- 
exponential relaxation(Z~ In both models, the probabilistic origins of the 
empirically found responses have a clear mathematical structure, see 
Table I. A unifying feature, leading in both approaches from the stretched 
exponential decay law to the class of two-power-law responses, is the 
passage from the commonly used tools of probability theory, i.e., from the 
"deterministic" summation of iid random variables and proper distribution 
functions, to more advanced techniques dealing with random sums of iid 
random variables and improper distribution functions. Such a qualitative 
change should be reflected in physical mechanisms underlying the power 
laws and the stretched-exponential relaxations. One should be able to dif- 
ferentiate the physical constraints underlying the notions of random sums 
of iid or deterministic sums of iid individual transition rates in the parallel 
channel model, as well as notions of proper or improper individual life-time 
distribution functions in the correlated cluster model. This assertion finds 
support in the frequency domain results, t39) where a gradual shift from 
serial relaxation at low frequencies to parallel relaxation at high frequencies 
has been found. 

Table I. Probabilistic Origins of the "Universal" Relaxation Response in the 
Parallel Channel and the Correlated Clusters Relaxation Model 

Parallel channel relaxation Correlated cluster relaxation 

�9 ( t )  = J ~  e b'dF~(b)  ~ ( t ) = l i m u ~ P r ( A u m i n [ O i u  . . . . .  ONN] 

>~ t) 

Proper life-time distribution of an 

individual subsystem in its imposed initial 

state Pr(Oiu ~ t lfl~ = b) = e -b '  

Definition of the 

relaxation function 

Probabilistic origins 

of the stretched 

exponential response 

Probabilistic origins 

of the power laws 

response 

Deterministic summation 

of iid individual relaxation 

rates fli 

/ ~ =  limu . . . .  ~,U_ , fl~/A /v 

Random summation of idd Improper life-time distribution of an 

individual relaxation rates fli individual subsystem in its imposed initial 

/~ = lim . . . .  Z~"- i fl~/A~, state (random cut-offtime at t = s )  

where v. is neg. binomial r .v .  Pr(Oiu ~ t lfl~ = b, 0r  = s )  = e - ~  mi.(t,.,') 
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